CS275 Discrete Mathematics

Gongbo "**Tony**" Liang Fourth year PhD student in CS gb.liang@uky.edu liang@cs.uky.edu

Goal for labs

- Review contents
- Practice for homeworks/tests
- Answer questions
- Help you better understand the course & get the grade you aimed

Logic and Proof Section 1.1 - 1.6

What is a **proposition**?

- A **proposition** is a declarative statement that is **True** or **False** but not both.
 - E.g., Tony is original from China.

Negation of a proposition (¬p)

- ¬p: it is not the case that p
 - E.g.,
 - p = true, $\neg p = false$
 - P = "Today is Wed.", ¬p = "Today is NOT Wed."

Conjunction of p and q ($p \land q$)

- The conjunction p∧q (p and q) is true if both p and q are true; otherwise it is false.
 - E.g.,
 - p = "Today is Wed.", q = "Today is 01/01."
 - p∧q = **?**

Disjunction of p and q ($p \lor q$)

- The disjunction p∨q (p or q) is false if both p and q are false; otherwise, it is true.
 - E.g.,
 - p = "Today is Wed.", q = "Today is 01/01."
 - p∨q = **?**

Conditional statement ($p \rightarrow q$)

- The conditional statement p→q (if p then q) is false when p is true and q is false; otherwise, it is true.
 - E.g., p = "If I have a keyboard", q = "I can type"
 - If p is true, q is true, $p \rightarrow q$ is true
 - If p is false, q is false
 - "If I DON'T have a keyboard, I CAN'T type"
 - Could be! Thus, $p \rightarrow q = true$
 - If p is false, q is true,
 - "If I don't have a keyboard, I still type", thus, $p \rightarrow q$ is true
 - If p is true, q is false,
 - "If I have a keyboard, I cannot type"
 - Why?! Thus, $p \rightarrow q = false$

Conditional statement ($p \rightarrow q$)

- $p \rightarrow q \equiv \neg p \lor q$
 - E.g., p = "If I have a keyboard", q = "I can type"
 - If p is true, q is true
 - ¬p V q: "if I don't have a keyboard, I can type" TRUE
 - If p is false, q is false
 - ¬p V q: "if I have have a keyboard, I cannot type" FALSE
 - If p is false, q is true
 - ¬p V q: "if I don't have a keyboard, I still can type" TRUE
 - If p is true, q is false
 - ¬p V q: "if I don't have a keyboard, I cannot type" TRUE

Prove $p \rightarrow q \equiv \neg p \lor q$ (using truth table)

р	q	p→q	٦р	p ∨ q
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Converse of $p \rightarrow q$ & Contraposition of $p \rightarrow q$

- Converse of $p \rightarrow q$ is $q \rightarrow p$
- The contraposition of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$

р	q	p→q	٦q	٦р	q → ¬p
Т	Т	Т	F	F	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Biconditional statement ($p \leftrightarrow q$)

 A biconditional statement p↔q (if p and only if q) is true if both operands are true or both operands are false

p	q	$p \leftrightarrow q$
т	Т	Т
т	F	F
F	Т	F
F	F	Т

Exercise: Prove $\mathbf{p} \leftrightarrow \mathbf{q} \equiv (\mathbf{p} \land \mathbf{q}) \lor (\neg \mathbf{p} \land \neg \mathbf{q})$ using truth table

р	q	$p\leftrightarrowq$	p∧q	٦р	٦q	p ר ∧ קר	(p ∧ q) ∨ (p ∧ q)
Т	Т	Т	Т	F	F	F	Т
Т	F	F	F	F	Т	F	F
F	Т	F	F	Т	F	F	F
F	F	Т	F	Т	Т	Т	Т