CS275 Discrete Mathematics

Gongbo "Tony" Liang
Fourth year PhD student in CS
gb.liang@uky.edu
liang@cs.uky.edu

Goal for labs

- Review contents
- Practice for homeworks/tests
- Answer questions
- Help you better understand the course \& get the grade you aimed

Logic and Proof Section 1.1-1.6

What is a proposition?

- A proposition is a declarative statement that is True or False but not both.
- E.g., Tony is original from China.

Negation of a proposition ($\neg \mathrm{p}$)

- $\quad \mathrm{p}$: it is not the case that p
- E.g.,
- $p=$ true, $\neg p=$ false
- $\quad \mathrm{P}=$ "Today is Wed.", $\neg \mathrm{p}=$ "Today is NOT

Wed."

Conjunction of p and $q(p \wedge q)$

- The conjunction $p \wedge q$ (p and q) is true if both p and q are true; otherwise it is false.
- E.g.,

$$
\begin{aligned}
& \text { - } \mathrm{p}=\text { "Today is Wed.", } \mathrm{q}=\text { "Today is 01/01." } \\
& \text { - } \mathrm{p} \wedge \mathrm{q}=\text { ? }
\end{aligned}
$$

Disjunction of p and $q(p \vee q)$

- The disjunction $\mathrm{p} \vee \mathrm{q}(\mathrm{p}$ or q$)$ is false if both p and q are false; otherwise, it is true.
- E.g.,
- $p=$ "Today is Wed.", $q=$ "Today is 01/01."
- $\mathrm{p} \vee \mathrm{q}=$?

Conditional statement ($p \rightarrow q$)

- The conditional statement $\mathrm{p} \rightarrow \mathrm{q}$ (if p then q) is false when p is true and q is false; otherwise, it is true.
- E.g., $\mathrm{p}=$ "If I have a keyboard", $\mathrm{q}=$ "I can type"
- If p is true, q is true, $p \rightarrow q$ is true
- If p is false, q is false
- "If I DON'T have a keyboard, I CAN'T type"
- Could be! Thus, $\mathrm{p} \rightarrow \mathrm{q}=$ true
- If p is false, q is true,
- "If I don't have a keyboard, I still type", thus, $p \rightarrow q$ is true
- If p is true, q is false,
- "If I have a keyboard, I cannot type"
- Why?! Thus, $p \rightarrow q=$ false

Conditional statement $(p \rightarrow q)$

- $\mathbf{p} \rightarrow \mathbf{q} \equiv \neg \mathbf{p} \vee \mathrm{q}$
- E.g., p = "If I have a keyboard", q = "I can type"
- If p is true, q is true
- \quad p V q: "if I don't have a keyboard, I can type" TRUE
- If p is false, q is false
- \quad p \vee q: "if I have have a keyboard, I cannot type" FALSE
- If p is false, q is true
- $\quad \neg \mathrm{p} \vee \mathrm{q}$: "if I don't have a keyboard, I still can type" TRUE
- If p is true, q is false
- \quad p V q: "if I don't have a keyboard, I cannot type" TRUE

Prove $p \rightarrow q \equiv \neg p \vee q$ (using truth table)

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$	$\boldsymbol{\sim p}$	$\boldsymbol{\sim} \mathbf{p} \mathbf{q}$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Converse of $\mathbf{p} \rightarrow \mathbf{q}$ \& Contraposition of $\mathbf{p} \rightarrow \mathbf{q}$

- Converse of $p \rightarrow q$ is $q \rightarrow p$
- The contraposition of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$	$\boldsymbol{\neg q}$	$\boldsymbol{\neg p}$	$\boldsymbol{\neg q} \rightarrow \boldsymbol{\mathbf { p }}$
T	T	T	F	F	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

Biconditional statement ($\mathbf{p} \leftrightarrow \mathbf{q}$)

- A biconditional statement $p \leftrightarrow q$ (if p and only if q) is true if both operands are true or both operands are false

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \leftrightarrow \boldsymbol{q}$
T	T	T
T	F	F
F	T	F
F	F	T

Exercise: Prove $p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q)$ using truth table

\mathbf{p}	\mathbf{q}	$\mathbf{p} \leftrightarrow \mathbf{q}$	$\mathbf{p} \wedge \mathbf{q}$	$\boldsymbol{\imath p}$	$\boldsymbol{q} \mathbf{q}$	$\neg \mathbf{p} \wedge \mathbf{q}$	$(\mathbf{p} \wedge \mathbf{q}) \vee(\neg \mathbf{p} \wedge \neg \mathbf{q})$
T	T	T	T	F	F	F	T
T	F	F	F	F	T	F	F
F	T	F	F	T	F	F	F
F	F	T	F	T	T	T	T

